作家
登录

TensorFlow学习之神经网络的构建

作者: 来源: 2018-03-22 17:06:14 阅读 我要评论

  1. merge = tf.summary.merge_all()#归并图表2 writer = tf.summary.FileWriter("G:/test/",graph=sess.graph)#写进文件3 result = sess.run(merge,feed_dict={xs:x_data,ys:y_data})#运行打包的图表merge4 writer.add_summary(result,i)#写入文件,并且单步长50  

C.初始化与运行设定的图表

完全代码及显示效不雅:

  1. import tensorflow as tf 
  2. import numpy as np 
  3. import matplotlib.pyplot as plt 
  4.  
  5. def add_layer(inputs , in_size , out_size , n_layer = 1 , activate = None): 
  6.     layer_name = "layer" + str(n_layer) 
  7.     with tf.name_scope(layer_name): 
  8.         with tf.name_scope("Weights"): 
  9.             Weights = tf.Variable(tf.random_normal([in_size,out_size]),name="W")#随机初始化 
  10.             tf.summary.histogram(layer_name+"Weight",Weights) 
  11.         with tf.name_scope("Baises"): 
  12.             baises  = tf.Variable(tf.zeros([1,out_size])+0.1,name="B")#可以随机然则不要初始化为0,都为固定值比随机好点 
  13.             tf.summary.histogram(layer_name+"Baises",baises) 
  14.         y = tf.matmul(inputs, Weights) + baises #matmul:矩阵乘法,multipy:一般是数量的乘法 
  15.         if activate: 
  16.             y = activate(y) 
  17.         tf.summary.histogram(layer_name+"y_sum",y) 
  18.         return y 
  19. if __name__ == '__main__'
  20.     x_data = np.linspace(-1,1,300,dtype=np.float32)[:,np.newaxis]#创建-1,1的300个数,此时为一维矩阵,后面转化为二维矩阵===[1,2,3]-->>[[1,2,3]] 
  21.     noise = np.random.normal(0,0.05,x_data.shape).astype(np.float32)#噪声是(1,300)格局,0-0.05大年夜小 
  22.     y_data = np.square(x_data) - 0.5 + noise #带有噪声的抛物线 
  23.     fig = plt.figure('show_data')# figure("data")指定图表名称 

      推荐阅读

      教你禁用Windows 10中的各种小广告

    比拟之前的Win7/Win8,Win10的告白可谓无孔不入。开端菜单、应用列表、锁屏页面、通知中间……,所有你能想到的处所,几乎都能看到各类告白。 全平易近充电节 | 3月26日~30日 2000位IT行业拭>>>详细阅读


    本文标题:TensorFlow学习之神经网络的构建

    地址:http://www.17bianji.com/lsqh/40823.html

关键词: 探索发现

乐购科技部分新闻及文章转载自互联网,供读者交流和学习,若有涉及作者版权等问题请及时与我们联系,以便更正、删除或按规定办理。感谢所有提供资讯的网站,欢迎各类媒体与乐购科技进行文章共享合作。

网友点评
自媒体专栏

评论

热度

精彩导读
栏目ID=71的表不存在(操作类型=0)